Список модельных объектов (биология)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Модельные организмы[править | править код]

Вирусы[править | править код]

Археи[править | править код]

  • Methanococcus — изучение биосинтеза метана

Бактерии[править | править код]

Делящиеся Bacillus subtilis

Протисты[править | править код]

Грибы[править | править код]

Растения[править | править код]

Arabidopsis thaliana
  • Резуховидка Таля Arabidopsis thaliana, наиболее популярное модельное растение, используемое во многих областях; однолетнее крестоцветное-эфемер, имеющее крайне короткий жизненный цикл и небольшой размер генома (первое из растений, чей геном секвенирован)[6] Закартировано и изучено множество морфологических и биохимических мутаций[6] Генетическая база данных, содержащая и большое количество другой информации об этом виде — TAIR[6];
  • плауновидное селагинелла Selaginella moellendorffii — эволюция растений, молекулярная биология; геном (один из самых коротких среди высших растений, около 100 мегабаз) секвенирован;
  • Brachypodium distachyon — модельный злак (молекулярная биология, генетика, агрономия);
  • Лядвенец Lotus japonicus, модельное бобовое, исследование симбиоза с клубеньковыми бактериями;
  • Ряска Lemna gibba, быстрорастущее мелкое водное однодольное; может культивироваться в чистых (безмикробных) культурах (водная токсикология, экспрессия генов);
  • Кукуруза (Zea mays L.) — одна из основных зерновых культур и классический генетический модельный организм; у этого диплоидного однодольного 10 пар крупных хромосом, которые легко изучать под микроскопом, что облегчает цитогенетические исследования; известно большое число фенотипически выраженных мутаций, гены которых закартированы (именно благодаря этому при изучении кукурузы были открыты транспозоны), и большое число потомков от каждого скрещивания (генетика, молекулярная биология, агрономия);
  • Люцерна Medicago truncatula — модельное бобовое, близкий родственник люцерны посевной (Medicago sativa) (молекулярная биология, агрономия);
  • Губастик (Mimulus) — крупный род (около 120 видов), традиционно относимый к семейству норичниковые (по более новым данным, относится к семейству Phrymaceae; используется для эволюционно-генетических исследований[7];
  • Рис (Oryza sativa) — одна из важнейших зерновых культур; имеет один из самых маленьких геномов среди зерновых злаков, который полностью секвенирован (агрономия, молекулярная биология);
  • Зеленый мох Physcomitrella patens — всё более широко используется в исследованиях развития и эволюционной биологии растений[8] Пока это единственный представитель мохообразных, чей геном полностью секвенирован; разработана методика генетической трансформации для данного вида;
  • Виды рода тополь (Populus) — модельные виды для изучения генетики и культивирования древесных растений. Имеют небольшой размер генома и быстрый рост, разработана методика трансформации. Полностью секвенирован геном североамериканского вида Тополь волосистоплодный (Populus trichocarpa);
  • Лук репчатый — модельный организм в генотоксикологических исследованиях. Имеет хорошо изученный геном (2n=16) и поэтому подходит для ана-телофазного анализа. Результаты Allium-тестов имеют корреляцию с другими тестами на животных, растительных и микроорганизмах, а также могут быть экстраполированы на человека.

Животные[править | править код]

Беспозвоночные[править | править код]

Caenorhabditis elegans
  • Виды рода гидра (Hydra), пресноводные полипы; модельный организм биологии развития, в частности, служит для изучения процессов регенерации. Геном гидры (североамериканский вид Hydra magnipapillata) частично расшифрован. Имеются коллекции мутантных линий гидры в Японии и Германии. Разработана методика получения трансгенных гидр.
  • Nematostella vectensis, нематостелла — литоральная роющая актиния из семейства едвардсиид (Edwardsiidae), в последние годы ставшая главным модельным объектом для изучения молекулярной биологии и биологии развития книдарий. В 2007 г. геном нематостеллы был полностью секвенирован [9].
  • Symsagittifera roscoffensis (syn. Convoluta roscoffensis), представитель примитивной группы «бескишечных турбеллярий» (ныне тип Acoelomorpha) — изучение эволюции плана строения двусторонне-симметричных животных.
  • Нематода Caenorhabditis elegans (C. elegans)[10] — генетический контроль развития и физиологических процессов (первый многоклеточный организм, чей геном был полностью секвенирован; в настоящее время секвенирован геном второго вида из этого рода, C. briggsae).
  • Нематода Pristionchus pacificus, используется в работах по эволюционной биологии развития для сравнения с C. elegans.
  • Медицинская пиявка Hirudo medicinalis — нейробиология (простые нервные системы): изучение локомоции; изучение развития нервной системы в биологии развития.
  • Булавоусый мучной хрущак Tribolium castaneum — мелкая легко разводимая чернотелка, используемая для поведенческих и экологических экспериментов.
  • Дафнии (Daphnia pulex, D. magna) — один из главных модельных объектов водной токсикологии. Используются также для изучения популяционной генетики. Геном D. pulex частично расшифрован.
  • Дрозофилы (род Drosophila), в частности, вид Drosophila melanogaster — плодовая мушка, знаменитый объект генетических исследований. Легко содержится и разводится в лаборатории, имеет быструю смену поколений и множество мутаций с различным фенотипическим выражением. Во второй половине XX века один из основных объектов биологии развития. Геном полностью секвенирован. Недавно стала использоваться для нейрофармакологических исследований [11].
  • Голожаберный моллюск Hermissenda crassicornis — нейробиология (простые нервные системы): механизмы памяти и научения.
  • Морской заяц Aplysia californica, заднежаберный моллюск — нейробиология (простые нервные сиистемы): молекулярные механизмы памяти и обучения; перестройки цитоскелета.
  • Морской ангел Clione limacina — нейробиология (простые нервные системы): образование связей между нейронами, регенерация нервов, контроль локомоции и других форм поведения.
  • Кальмар Euprymna scolopes, модель для изучения симбиотических отношений между животными и бактериями, биолюминесценции.
  • Кальмар Loligo pealei, классический объект для изучения работы нервных клеток и их цитоскелета (имеет гигантские аксоны диаметром до 1 мм).
  • Морские ежи Arbacia punctulata и Strongylocentrotus purpuratus, классические объекты эмбриологии. Геном Strongylocentrotus purpuratus полностью расшифрован в 2006 г.[12]
  • Аппендикулярия Oikopleura dioica[13].
  • Асцидия Ciona intestinalis— эмбриология, эволюция генома хордовых/ Геном «начерно» секвенирован в 2002 г [14].

Позвоночные[править | править код]

Лабораторные мыши
Лабораторные свиньи (Университет Гумбольдта, Берлин, 1981)
  • Миноги (сем. Petromyzontidae) — модель для изучения спинного мозга
  • Медака Oryzias latipes, модель в биологии развития (более неприхотлива, чем традиционная Danio rerio
  • Фугу Takifugu rubripes — рыба из семейства Tetraodontidae — имеет компактный геном с небольшим количеством некодирующих последовательностей. Геном секвенирован.
  • Полосатый данио (Danio rerio), (в английской литературе zebra-fish) — почти прозрачная на ранних стадиях развития пресноводная рыбка; важный объект биологии развития, водной токсикологии и токсикопаталогии [15]. Геном секвенирован.
  • Африканская шпорцевая лягушка Xenopus laevis — один из основных объектов биологии развития; ооциты используются также для изучения экспрессии генов. Геном секвенирован.
  • Анолис Anolis carolinensis — геном полностью секвенирован в 2011 г.[2]
  • Курица (Gallus gallus domesticus) — модельный объект эмбриологии амниот, используется с древнейших времен до наших дней
  • Зебровая амадина (Taeniopygia guttata) — модельный объект нейробиологии и этологии (изучение пения птиц и слуховой системы)
  • Кошка (Felis catus) — модельный объект нейрофизиологии, в частности, изучения функций мозжечка и механизмов локомоции
  • Собака (Canis familiaris) — классический объект физиологии животных (изучение работы дыхательной, кровеносной и пищеварительной систем), изучение выработки условных рефлексов в лаборатории И. П. Павлова («собака Павлова» — такой же собирательный образ, как «лабораторная морская свинка»).
  • Домовая мышь (Mus musculus) — главный модельный объект среди млекопитающих. Получено множество инбредных чистых линий, в том числе отобранных по признакам, представляющим интерес для медицины. этологии и др. (склонность к тучности. повышенный и пониженный интеллект, склонность к потреблению алкоголя, различная продолжительность жизни и т. п.). Геном полностью секвенирован. Разработаны методы получения трансгенных мышей с использованием стволовых клеток. Дополнительный интерес представляет как объект для изучения популяционной генетики и процессов видообразования, так как имеет сложную внутривидовую структуру (множество подвидов, различающиеся по кариотипу хромосомные расы).
  • Серая крыса (Rattus norvegicus) — важная модель для токсикологии, нейробиологии и физиологии; используется также, наряду с мышью, в молекулярной генетике и геномике. Геном полностью секвенирован.
  • Морская свинка (Cavia porcellus), использовалась в ранний период развития бактериологии, в частности, Робертом Кохом м Эмилем Берингом при изучении дифтерита (отсюда — «подопытная морская свинка» как собирательное название)
  • Хомяки (хомячки), несколько видов грызунов из разных родов подсемейства Cricetinae (наиболее обычны в лабораториях сирийский хомяк (Mesocricetus auratus), джунгарский хомячок (Phodopus sungorus) и китайский хомячок (Cricetulus griseus)); впервые были использованы в 1919 г вместо мышей для типирования пневмококков и при изучении лейшманиоза; в настоящее время одни из самых распространенных лабораторных млекопитающих (уступают по широте использования только мышам, крысам и, в некоторых странах, песчанкам); используются для получения клеточных линий (клеточная биология — онкология, получение гибридом и др.; линия клеток яичника китайского хомячка CHO используется также для производства терапевтических препаратов)
  • Макак-резус (Macacus mulatta) — медицинские исследования (в том числе изучение инфекционных болезней), этология, нейробиология
  • Шимпанзе (два вида, шимпанзе обыкновенный (Pan troglodytes) и шимпанзе карликовый (Pan paniscus) — ближайшие родственники человека среди ныне живущих видов. Сейчас используется в основном для изучения сложных форм поведения и познавательной деятельности животных. Геном Pan troglodytes секвенирован.
  • Человек разумный (Homo sapiens) — геном полностью секвенирован. Клинические исследования, эволюционная биология, физиология, нейробиология и др.

Модельные органы и ткани[править | править код]

Модельные клетки и клеточные линии[править | править код]

  • Клеточная линия BY-2 табака Nicotiana tabaccum — используется для изучения клеточной физиологии растений (цитология, физиология растений, биотехнология)
  • Клеточная линия HeLa клеток человека — бессмертные клетки, полученные из раковой опухоли шейки матки в 1951 г.; одна из основных клеточных линий человека, культивируемых в лабораториях. Использовалась для разработки вакцины против полиомиелита.

Модельные популяции[править | править код]

  • Наземная легочная улитка Cepaea nemoralis — классический объект для изучения популяционной экологии и генетики, в том числе действия на популяции естественного отбора

Примечания[править | править код]

  1. Chlamydomonas reinhardtii resources at the Joint Genome Institute. Дата обращения: 13 сентября 2009. Архивировано из оригинала 23 июля 2008 года.
  2. Chlamydomonas genome sequenced Архивная копия от 15 марта 2008 на Wayback Machine published in Science, October 12, 2007
  3. Kües U. Life history and developmental processes in the basidiomycete Coprinus cinereus (англ.) // Microbiol. Mol. Biol. Rev.[англ.] : journal. — 2000. — June (vol. 64, no. 2). — P. 316—353. — PMID 10839819. — PMC 98996. Архивировано 13 сентября 2019 года.
  4. Davis, Rowland H. Neurospora: contributions of a model organism (англ.). — Oxford [Oxfordshire]: Oxford University Press, 2000. — ISBN 0-19-512236-4.
  5. Ohm R.A., de Jong J.F., Lugones L.G. et al. Genome sequence of the model mushroom Schizophyllum commune (англ.) // Nature Biotechnology. — Nature Publishing Group, 2010. — Vol. 28. — P. 957—963. — doi:10.1038/nbt.1643. Архивировано 22 января 2011 года.
  6. 1 2 3 About Arabidopsis on The Arabidopsis Information Resource page (TAIR). Дата обращения: 13 сентября 2009. Архивировано 12 ноября 2019 года.
  7. Архивированная копия. Дата обращения: 16 июня 2021. Архивировано из оригинала 10 августа 2020 года.
  8. Rensing S. A., Lang D., Zimmer A. D., et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants (англ.) // Science : journal. — 2008. — January (vol. 319, no. 5859). — P. 64—9. — doi:10.1126/science.1150646. — PMID 18079367. Архивировано 6 марта 2008 года.
  9. Putnam N. H., Srivastava M., Hellsten U., Dirks B., Chapman J. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization (итал.) // Science : diario. — 2007. — V. 317. — P. 86—94. — PMID 17615350.
  10. Riddle, Donald L. C. elegans II (неопр.). — Plainview, N.Y: Cold Spring Harbor Laboratory Press[англ.], 1997. — ISBN 0-87969-532-3. Архивировано 19 июня 2009 года.
  11. Manev H., Dimitrijevic N., Dzitoyeva S. Techniques: fruit flies as models for neuropharmacological research (неопр.) // Trends Pharmacol Sci.. — 2003. — Т. 24, № 1. — С. 41—43. — doi:10.1016/S0165-6147(02)00004-4. Архивировано 2 ноября 2017 года.
  12. Sea Urchin Genome Sequencing Consortium. 2006. The genome of the sea urchin, Strongylocentrotus purpuratus. Science 314: 941—952.
  13. The Appendicularia Facility at the Sars International Centre for Marine Molecular Biology Архивная копия от 31 января 2009 на Wayback Machine.
  14. Dehal P, Satou. et al. 2002. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157—2167.
  15. Spitsbergen J. M., Kent M. L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations (англ.) // Toxicol Pathol[англ.] : journal. — 2003. — Vol. 31, no. Suppl. — P. 62—87. — doi:10.1080/01926230390174959. — PMID 12597434. — PMC 1909756. Архивировано 16 июля 2012 года.