Международный пассивно-активный стыковочный механизм

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Технические данные

Описание
Назначение: Часть стыковочного механизма корабля Dream Chaser
Разработчик: Компания QinetiQ Space по контракту с ЕКА
Размеры
Наружная Ширина: 1.42 м 4.66 м
Проход: 0,8 м 2.62 футов
Масса: < 325 кг < 716.5 ЛБ
Гарантии
Выносливость: Как минимум 210 дней
Успешность захвата: > 98%, при выполнении требований IDSS
Технические параметры
Избыточность: Переключение  на резерв быстрее чем 150 мс) + пассивный безопасный режим
Интерфейсы: 28В или

120В  и 28В постоянного тока

UART или MIL1553

Международный пассивно-активный стыковочный механизм (англ. International Berthing and Docking Mechanism, сокр. IBDM) — Европейская андрогинная стыковочная система слабого столкновения, которая позволяет стыковаться в активном и пассивном режимах большим и малым космических аппаратам. Разработка ведётся по контракту ЕКА с компанией QinetiQ Space, выступающей в качестве генерального подрядчика.[1][2]

История[править | править код]

Разработка IBDM начиналась в соответствии с программой разработок Космического центра имени Линдона Джонсона. Первый вариант предназначался для Спасательного корабля МКС[англ.]. Было принято решение о разработке экспериментального образца, чтобы продемонстрировать возможности системы и связанных с ними технологий. Космический центр имени Линдона Джонсона был ответственным за разработку системы и бортовое оборудование, а ЕКА создавало механическую часть проекта. Однако, после отмены американской программы создания Спасательного корабля МКС, эти два учреждения независимо разрабатывали, каждый - свой вариант стыковочной системы.

Международный пассивно-активный стыковочный механизм соответствует требованиям Международного стандарта стыковочной системы[3] (МССС) и, следовательно, совместим с Международными стыковочными адаптерами (IDA) на американском сегменте МКС.

Европейское космическое агентство в настоящее время начало вместе с Sierra Nevada Corporation разработать систему стыковки нового корабля с МКС в будущем[4]. А НАСА собиралось определить коммерческих подрядчиков (и помощников в разработке стыковочного механизма) для снабжения Международной космической станции в сентябре 2015 года.[5]

Описание[править | править код]

Международный активно-пассивный стыковочный механизм позволяет проводить стыковки космических аппаратов как в активном режиме, так и в пассивном, выполняя роль причала. Стыковочный механизм состоит из Системы мягкого захвата, а также из прижимной и запорной системы под названием Система жёсткого захвата. Авионика системы имеет горячее резервирование.

Система мягкого захвата[править | править код]

Система мягкого захвата может контролировать начало стыковки с помощью 6 кронштейнов с сервоприводом от разработчика RUAG Space (Швейцария). Через кронштейны контролируется  положение стыковочного кольца в 6 степенях свободы. Это облегчает процесс выравнивания платформы во время захвата.[6] При этом вся система может обеспечивать стыковку аппаратов с очень большим весом. Механические защелки при этом удерживают мягкий захват.

Система жёсткого захвата[править | править код]

Система жёсткого захвата использует специальные механические крюки, чтобы создать герметичный стык. Компания QinetiQ Space разработала несколько версий замков и крючков, прежде чем пришла к окончательной конструкции.[7] Испанская компания Sener Aeronáutica будет отвечать за дальнейшее развитие и качество других подсистем этого жёсткого захвата.

Применение[править | править код]

Dream Chaser

Американская компания Sierra Nevada Corporation разрабатывает космический корабль Dream Chaser. Он представляет собой небольшой многоразовый космический корабль, который выбран для перевозки груза и/или экипажа на МКС. Европейское космическое агентство передало Sierra Nevada Corporation необходимые данные для создания стыковочного узла нового корабля[4]. Этот узел будет установлен на негерметичный грузовой модуль, который будет отсоединён перед возвращением самого корабля на Землю.

Состояние[править | править код]

Международный пассивно-активный стыковочный механизм успешно прошел предварительный анализ в декабре 2015 года. Прототип механизма и его управляющего бортового оборудования был создан в марте 2016 года. Работоспособность системы была проверена на испытательной установке в Космическом центре имени Линдона Джонсона[8]. Соглашение об изготовлении модуля было подписано с ЕКА в апреле 2016 года.

Примечания[править | править код]

  1. Caporicci, Marco. IBDM: THE INTERNATIONAL BERTHING DOCKING MECHANISM FOR HUMAN MISSIONS TO LOW EARTH ORBIT AND EXPLORATION (англ.) // IAC : journal. — 2010. Архивировано 4 марта 2016 года.
  2. QinetiQ Space wins contract with European Space Agency to develop International Berthing Docking Mechanism. QinetiQ (3 июня 2014). Дата обращения: 4 января 2016. Архивировано 29 января 2016 года.
  3. International Docking System Standard. — Rev. C. — 2013. Архивировано 6 сентября 2020 года.
  4. 1 2 QinetiQ Space Wins ESA Contract for International Berthing Docking Mechanism. Дата обращения: 30 июля 2016. Архивировано 6 сентября 2020 года.
  5. Decision on new space station cargo contracts deferred. Spaceflight Now. Дата обращения: 22 апреля 2015. Архивировано 25 апреля 2015 года.
  6. Claessens, Dirk. DEVELOPMENT OF THE INTERNATIONAL BERTHING AND DOCKING MECHANISM COMPATIBLE WITH THE INTERNATIONAL DOCKING SYSTEM STANDARD (англ.) // IAC : journal. — 2012. Архивировано 4 марта 2016 года.
  7. K. De Vriendt; H. Dittmer; D. Vrancken; P. Urmston; O. Gracia; M. Caporicci. Evolution of the IBDM Structural Latch Development into a Generic Simplified DesignEvolution of the IBDM Structural Latch Development into a Generic Simplified Design (англ.) : journal. Архивировано 4 марта 2016 года.
  8. Dittmer, Helder; Paijmans, Bart. The International Berthing Docking Mechanism (IBDM):Demonstrating full compliance to the International Docking System Standard (IDSS) (англ.) // 66th International Astronautical Congress : journal. — 2016. — 16 October. Архивировано 18 марта 2015 года. Архивированная копия. Дата обращения: 30 июля 2016. Архивировано 18 марта 2015 года.